On choosability with separation of planar graphs with lists of different sizes

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On choosability with separation of planar graphs with lists of different sizes

A (k, d)-list assignment L of a graph G is a mapping that assigns to each vertex v a list L(v) of at least k colors and for any adjacent pair xy, the lists L(x) and L(y) share at most d colors. A graph G is (k, d)-choosable if there exists an L-coloring of G for every (k, d)-list assignment L. This concept is also known as choosability with separation. It is known that planar graphs are (4, 1)-...

متن کامل

On Choosability with Separation of Planar Graphs with Forbidden Cycles

We study choosability with separation which is a constrained version of list coloring of graphs. A (k, d)-list assignment L of a graph G is a function that assigns to each vertex v a list L(v) of at least k colors and for any adjacent pair xy, the lists L(x) and L(y) share at most d colors. A graph G is (k, d)-choosable if there exists an L-coloring of G for every (k, d)-list assignment L. This...

متن کامل

Adaptable choosability of planar graphs with sparse short cycles

Given a (possibly improper) edge-colouring F of a graph G, a vertex colouring of G is adapted to F if no colour appears at the same time on an edge and on its two endpoints. A graph G is called adaptably k-choosable (for some positive integer k) if for any list assignment L to the vertices of G, with |L(v)| ≥ k for all v, and any edge-colouring F of G, G admits a colouring c adapted to F where ...

متن کامل

k-forested choosability of graphs with bounded maximum average degree

A proper vertex coloring of a simple graph is $k$-forested if the graph induced by the vertices of any two color classes is a forest with maximum degree less than $k$. A graph is $k$-forested $q$-choosable if for a given list of $q$ colors associated with each vertex $v$, there exists a $k$-forested coloring of $G$ such that each vertex receives a color from its own list. In this paper, we prov...

متن کامل

(4, 2)-Choosability of Planar Graphs with Forbidden Structures

All planar graphs are 4-colorable and 5-choosable, while some planar graphs are not 4-choosable. Determining which properties guarantee that a planar graph can be colored using lists of size four has received significant attention. In terms of constraining the structure of the graph, for any l∈{3,4,5,6,7}" role="presentation" style="box-sizing: border-box; display: inline; line-height: normal; ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Mathematics

سال: 2015

ISSN: 0012-365X

DOI: 10.1016/j.disc.2015.01.008