On choosability with separation of planar graphs with lists of different sizes
نویسندگان
چکیده
منابع مشابه
On choosability with separation of planar graphs with lists of different sizes
A (k, d)-list assignment L of a graph G is a mapping that assigns to each vertex v a list L(v) of at least k colors and for any adjacent pair xy, the lists L(x) and L(y) share at most d colors. A graph G is (k, d)-choosable if there exists an L-coloring of G for every (k, d)-list assignment L. This concept is also known as choosability with separation. It is known that planar graphs are (4, 1)-...
متن کاملOn Choosability with Separation of Planar Graphs with Forbidden Cycles
We study choosability with separation which is a constrained version of list coloring of graphs. A (k, d)-list assignment L of a graph G is a function that assigns to each vertex v a list L(v) of at least k colors and for any adjacent pair xy, the lists L(x) and L(y) share at most d colors. A graph G is (k, d)-choosable if there exists an L-coloring of G for every (k, d)-list assignment L. This...
متن کاملAdaptable choosability of planar graphs with sparse short cycles
Given a (possibly improper) edge-colouring F of a graph G, a vertex colouring of G is adapted to F if no colour appears at the same time on an edge and on its two endpoints. A graph G is called adaptably k-choosable (for some positive integer k) if for any list assignment L to the vertices of G, with |L(v)| ≥ k for all v, and any edge-colouring F of G, G admits a colouring c adapted to F where ...
متن کاملk-forested choosability of graphs with bounded maximum average degree
A proper vertex coloring of a simple graph is $k$-forested if the graph induced by the vertices of any two color classes is a forest with maximum degree less than $k$. A graph is $k$-forested $q$-choosable if for a given list of $q$ colors associated with each vertex $v$, there exists a $k$-forested coloring of $G$ such that each vertex receives a color from its own list. In this paper, we prov...
متن کامل(4, 2)-Choosability of Planar Graphs with Forbidden Structures
All planar graphs are 4-colorable and 5-choosable, while some planar graphs are not 4-choosable. Determining which properties guarantee that a planar graph can be colored using lists of size four has received significant attention. In terms of constraining the structure of the graph, for any l∈{3,4,5,6,7}" role="presentation" style="box-sizing: border-box; display: inline; line-height: normal; ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Mathematics
سال: 2015
ISSN: 0012-365X
DOI: 10.1016/j.disc.2015.01.008